Output.system_series¶
- Output.system_series(attribute=None, start=None, end=None, asframe=True)[source]¶
Get one or more a time series for one or more system attributes. Specify series start index and end index to get desired time range.
- Parameters:
- attribute: int | str | EnumMeta | Sequence[int | str | EnumMeta] | None
The attribute index or name.
On of:
air_temp, rainfall, snow_depth, evap_infil_loss, runoff_flow, dry_weather_inflow, gw_inflow, rdii_inflow, direct_inflow, total_lateral_inflow, flood_losses, outfall_flows, volume_stored, evap_rate.
defaults to None.
Can also input the integer index of the attribute you would like to pull or the actual enum from Output.system_attributes.
Setting to None indicates all attributes.
- start_index: Union[str, int, datetime, None], optional
The start datetime or index of from which to return series, defaults to None.
Setting to None indicates simulation start.
- end_index: Union[str, int, datetime, None], optional
The end datetime or index of from which to return series, defaults to None.
Setting to None indicates simulation end.
- asframe: bool
switch to return an indexed DataFrame. Set to False to get an array of values only, defaults to True
- Returns:
- Union[pd.DataFrame,np.ndarray]
DataFrame or ndarray of attribute values in each column for request date range
Examples
Pull two system attribute time series
>>> from swmm.pandas import Output,example_out_path >>> out = Output(example_out_path) >>> out.system_series(['total_lateral_inflow','rainfall']) total_lateral_inflow rainfall datetime 1900-01-01 00:05:00 0.902807 0.03000 1900-01-01 00:10:00 0.902800 0.03000 1900-01-01 00:15:00 0.902793 0.03000 1900-01-01 00:20:00 0.902786 0.03000 1900-01-01 00:25:00 0.902779 0.03000 ... ... ... 1900-01-01 23:40:00 1.431874 0.03224 1900-01-01 23:45:00 1.431869 0.03224 1900-01-01 23:50:00 1.431876 0.03224 1900-01-01 23:55:00 1.431894 0.03224 1900-01-02 00:00:00 1.431921 0.00000 [288 rows x 2 columns]